

Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats

Science Objectives

- Relate precipitation structure evolution, including diurnal cycle, to the evolution of the upper-level warm core and associated intensity changes
- Relate the occurrence of intense precipitation cores (convective bursts) to storm intensity evolution
- Relate retrieved environmental moisture measurements to coincident measures of storm structure (including size) and intensity
- Assimilate microwave radiances and/or retrievals in mesoscale and global numerical weather prediction models to assess impacts on storm track and intensity

the near right CubeSat has a single channel radiance image of a TC) with 30-minute median revisit rate to meet most PATH requirements.

Significance to NASA

- First high-revisit microwave nearly global observations of precipitation, temperature, and humidity
- Fulfills most of PATH Decadal Survey mission objectives using a low-cost, easy-to-launch CubeSat constellation
- Complements GPM, CYGNSS, and GOES-R missions with high refresh, near-all-weather measurements of precipitation and thermodynamic structure
- Increases understanding of critical processes driving significant and rapid changes in storm structure/intensity

Command, Control, Communication and Data Elements for the TROPICS Constellation of 12 CubeSats

Science Team

William Blackwell, Pl	MIT Lincoln Laboratory
Scott Braun, PS	NASA GSFC
Robert Atlas, Co-I	NOAA AOML
Ralf Bennartz, Co-I	University of Wisconsin
Mark DeMaria, Co-I	NOAA NHC
Jason Dunion, Co-I	University of Miami

Ron Errico, Co-I	NASA GSFC/GMA0
Vince Leslie, Co-I	MIT Lincoln Laboratory
Frank Marks, Co-I	NOAA AOML
Robert Rogers, Co-I	NOAA AOML
Chris Velden, Co-I	University of Wisconsin

TROPICS CubeSat Key Characteristics

LINCOLN LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Each **TROPICS** CubeSat is a dual-spinning 3U CubeSat equipped with a 12-channel passive microwave spectrometer providing imagery near 90 and 206 GHz, temperature sounding near 118 GHz, and moisture sounding near 183 GHz. Each CubeSat comprises a 2U spacecraft bus with ADCS, avionics, power, and communications, and a 1U spinning radiometer payload with highly integrated, compact microwave receiver electronics.

Bus with solar panels in launch position 10 cm × 10 cm × 34 cm

MicroMAS-2 is a 3U CubeSat with heritage from MicroMAS-2D and MiRaTA flight designs

Investigation Management and Participants

Participating Organizations						
MIT Lincoln Laboratory	PI institution, CubeSat development, calibration and testing, Level 1 data product lead, Level 2 algorithm developer, Science Operations Center	NASA Wallops	FM CubeSat assembly and test, ground stations, Mission Planning Center			
University of Wisconsin – Madison	Data Processing Center, Level 2 data product lead and algorithm developer, science relating warm-core evolution to storm structure and intensity	USU Space Dynamics Laboratory	Mission Operations Center, Ground Station Network			
NASA Goddard Space Flight Facility	PS, data assimilation, study of moisture impacts on structure and intensity	University of Massachusetts Amherst	Receiver front end			
NOAA National Weather Service National Hurricane Center	Study precipitation structure evolution and microwave parameters in statistical storm intensity models	NOAA Atlantic Oceanographic Meteorological Laboratory	Regional assimilation leadership; intensity and track forecasting; operations calibration and validation			
MIT Space Systems Laboratory	Data validation	Cornell University	Optimize constellation architecture; orbital analysis to maintain constellation revisit rates			
CIMAS University of MIAMI (Cooperative Institute of Marine and Atmospheric Studies)	Study relationship between moisture and precipitation to the storm's structure and intensity, diurnal cycle of hurricane structure	Tufts University	Geolocation and calibration			

Management Structure

William Blackwell	MIT LL, Principal Investigator
Scott Braun	NASA GSFC, Project Scientist
Dennis Burianek	MIT LL, Program Manager
Brenda Dingwall	NASA WFF, Deputy PM
Vince Leslie	MIT LL, Project Systems Engineer
Sue Burzyk	MIT LL, Business Program Manager
Liam Gumley	UW, Data Segment Lead
Tim Neilsen	USU SDL, Mission Ops. Lead

Cost Summary (\$M)							
	Phase A/B	Phase C/D	Phase E/F	Total RY\$			
PI-MM Cost	9.100	17.203	3.897	30.201			
Reserve %	25%	31%	15%	26%			
Gap Planning Budget	0.000	1.353	0.000	1.353			
Integration with Vehicle	0.000	0.319	0.000	0.319			
Contributions	0.104	0.126	0.073	0.304			
Total Mission Cost	9.204	19.002	3.970	32.176			